Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
Genet. mol. biol ; 41(1,supl.1): 341-354, 2018. tab, graf
Article in English | LILACS | ID: biblio-892490

ABSTRACT

Abstract Alcohol dehydrogenases belong to the large superfamily of medium-chain dehydrogenases/reductases, which occur throughout the biological world and are involved with many important metabolic routes. We considered the phylogeny of 190 ADH sequences of animals, fungi, and plants. Non-class III Caenorhabditis elegans ADHs were seen closely related to tetrameric fungal ADHs. ADH3 forms a sister group to amphibian, reptilian, avian and mammalian non-class III ADHs. In fishes, two main forms are identified: ADH1 and ADH3, whereas in amphibians there is a new ADH form (ADH8). ADH2 is found in Mammalia and Aves, and they formed a monophyletic group. Additionally, mammalian ADH4 seems to result from an ADH1 duplication, while in Fungi, ADH formed clusters based on types and genera. The plant ADH isoforms constitute a basal clade in relation to ADHs from animals. We identified amino acid residues responsible for functional divergence between ADH types in fungi, mammals, and fishes. In mammals, these differences occur mainly between ADH1/ADH4 and ADH3/ADH5, whereas functional divergence occurred in fungi between ADH1/ADH5, ADH5/ADH4, and ADH5/ADH3. In fishes, the forms also seem to be functionally divergent. The ADH family expansion exemplifies a neofunctionalization process where reiterative duplication events are related to new activities.

2.
Genet. mol. biol ; 28(4): 645-653, Dec. 2005. tab
Article in English | LILACS | ID: lil-450987

ABSTRACT

The genes encoding 13 classes of pathogenesis-related (PR) proteins were examined for positive selection using maximum-likelihood (ML) models of codon substitution. The study involved 194 sequences from 54 species belonging to 37 genera. Although the sizes of the sequences examined varied from 237 bp for PR12 to 1,110 bp for PR7, most classes (9 out of 13) contained sequences made up of more than 400 nucleotides. Signs of positive selection were obtained for sites in PR proteins 4, 6, 8, 9 and 15 using an ML-based Bayesian method and likelihood ratio tests. These results confirm the importance of positive selection in proteins related to defense mechanisms already observed in a wide array of organisms


Subject(s)
Evolution, Molecular , Plant Proteins , Genetic Variation , Selection, Genetic , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL